FIXED RESISTORS DEFINITION BASIC AND TUTORIALS



The fixed resistors are those whose value cannot be varied after manufacture. Fixed resistors are classified into composition resistors, wire-wound resistors, and metal-film resistors. Table 1.2 outlines the characteristics of some typical fixed resistors.


TABLE 1.2 Characteristics of Typical Fixed Resistors
Operating
Resistor Types Resistance Range Watt Range Temp. Range a, ppm/°C
Wire-wound resistor
Precision 0.1 to 1.2 MW 1/8 to 1/4 –55 to 145 10
Power 0.1 to 180 kW 1 to 210 –55 to 275 260
Metal-film resistor
Precision 1 to 250 MW 1/20 to 1 –55 to 125 50–100
Power 5 to 100 kW 1 to 5 –55 to 155 20–100
Composition resistor
General purpose 2.7 to 100 MW 1/8 to 2 –55 to 130 1500



Wire-Wound Resistors. Wire-wound resistors are made by winding wire of nickel-chromium alloy on a ceramic tube covering with a vitreous coating. The spiral winding has inductive and capacitive characteristics that make it unsuitable for operation above 50 kHz. The frequency limit can be raised by noninductive winding so that the magnetic fields produced by the two parts of the winding cancel.

Composition Resistors. Composition resistors are composed of carbon particles mixed with a binder. This mixture is molded into a cylindrical shape and hardened by baking.

Leads are attached axially to each end, and the assembly is encapsulated in a protective encapsulation coating. Color bands on the outer surface indicate the resistance value and tolerance. Composition resistors are economical and exhibit low noise levels for resistances above 1 MW.

Composition resistors are usually rated for temperatures in the neighborhood of 70°C for power ranging from 1/8 to 2 W. Composition resistors have end-to-end shunted capacitance that may be noticed at frequencies in the neighborhood of 100 kHz, especially for resistance values above 0.3 MW.

Metal-Film Resistors. Metal-film resistors are commonly made of nichrome, tin-oxide, or tantalum nitride, either hermetically sealed or using molded-phenolic cases. Metal-film resistors are not as stable as the wire wound resistors.

Depending on the application, fixed resistors are manufactured as precision resistors, semiprecision resistors, standard general-purpose resistors, or power resistors. Precision resistors have low voltage and power coefficients, excellent temperature and time stabilities, low noise, and very low reactance.

These resistors are available in metal-film or wire constructions and are typically designed for circuits having very close resistance tolerances on values. Semiprecision resistors are smaller than precision resistors and are primarily used for current-limiting or voltage-dropping functions in circuit applications. Semiprecision resistors have long-term temperature stability.

General-purpose resistors are used in circuits that do not require tight resistance tolerances or long-term stability. For general-purpose resistors, initial resistance variation may be in the neighborhood of 5% and the variation in resistance under full-rated power may approach 20%.

Typically, general-purpose resistors have a high coefficient of resistance and high noise levels. Power resistors are used for power supplies, control circuits, and voltage dividers where operational stability of 5% is acceptable. Power resistors are available in wire-wound and film constructions. Film-type power resistors have the advantage of stability at high frequencies and have higher resistance values than wire-wound resistors for a given size.

2 comments:

  1. Greta explanation of the functions of each resistor. There are so many types and it can become quite confusing at times.

    ReplyDelete
  2. Thanks for suggesting good list. I appreciate your work this is really helpful for everyone. Get more information at Metal Resistor. Keep posting such useful information.

    ReplyDelete

PREVIOUS ARTICLES

free counters