DIELECTRIC LOSS AND CORONA BASIC INFORMATION AND TUTORIALS



Dielectric Hysteresis and Conductance
When an alternating voltage is applied to the terminals of a capacitor, the dielectric is subjected to periodic stresses and displacements. If the material were perfectly elastic, no energy would be lost during any cycle, because the energy stored during the periods of increased voltage would be given up to the circuit when the voltage is decreased.

However, since the electric elasticity of dielectrics is not perfect, the applied voltage has to overcome molecular friction or viscosity, in addition to the elastic forces. The work done against friction is converted into heat and is lost. This phenomenon resembles magnetic hysteresis in some respects but differs in others.

It has commonly been called dielectric hysteresis but is now often called dielectric loss. The energy lost per cycle is proportional to the square of the applied voltage.

An imperfect capacitor does not return on discharge the full amount of energy put into it. Sometime after the discharge, an additional discharge may be obtained. This phenomenon is known as dielectric absorption.

A capacitor that shows such a loss of power can be replaced for purposes of calculation by a perfect capacitor with an ohmic conductance shunted around it. This conductance (or “leakance”) is of such value that its PR loss is equal to the loss of power from all causes in the imperfect capacitor.

The actual current through the capacitor is then considered as consisting of two components—the leading reactive component through the ideal capacitor and the loss component, in phase with the voltage, through the shunted conductance.

Electrostatic Corona.
When the electrostatic flux density in the air exceeds a certain value, a discharge of pale violet color appears near the adjacent metal surfaces. This discharge is called electrostatic corona.

In the regions where the corona appears, the air is electrically ionized and is a conductor of electricity. When the voltage is raised further, a brush discharge takes place, until the whole thickness of the dielectric is broken down and a disruptive discharge, or spark, jumps from one electrode to the other.

Corona involves power loss, which may be serious in some cases, as on transmission lines. Corona can form at sharp corners of high-voltage switches, bus bars, etc., so the radii of such parts are made large enough to prevent this.

A voltage of 12 to 25 kV between conductors separated by a fraction of an inch, as between the winding and core of a generator or between sections of the winding of an air-blast transformer, can produce a voltage gradient sufficient to cause corona.

A voltage of 100 to 200 kV may be required to produce corona on transmission-line conductors that are separated by several feet. Corona can have an injurious effect on fibrous insulation.

No comments:

Post a Comment

PREVIOUS ARTICLES

free counters