Showing posts with label Dips. Show all posts
Showing posts with label Dips. Show all posts

EXAMPLES OF POOR POWER QUALITY


POOR POWER QUALITY EXAMPLES

Poor power quality is usually identified in the “powering” part of the definition, namely in the deviations in the voltage waveform from the ideal. A set of waveforms for typical power disturbances is shown in Figure 1.5. These waveforms are either (a) observed, (b) calculated, or (c) generated by test equipment.


The following are some examples of poor power quality and descriptions of poor power-quality “events.” Throughout, we shall paraphrase the IEEE definitions.

■ A voltage sag (also called a “dip”9) is a brief decrease in the rms linevoltage of 10 to 90 percent of the nominal line-voltage. The duration of a sag is 0.5 cycle to 1 minute [1.44–1.50]. Common sources of sags are the starting of large induction motors and utility faults.

■ A voltage swell is the converse to the sag. A swell is a brief increase in the rms line-voltage of 110 to 180 percent of the nominal line-voltage for a duration of 0.5 cycle to 1 minute. Sources of voltage swells are line
faults and incorrect tap settings in tap changers in substations.

■ An impulsive transient is a brief, unidirectional variation in voltage, current, or both on a power line. The most common causes of impulsive transients are lightning strikes, switching of inductive loads, or switching in the power distribution system. These transients can result in equipment shutdown or damage if the disturbance level is high enough. The effects of transients can be mitigated by the use of transient voltage suppressors such as Zener diodes and MOVs (metal-oxide varistors).

■ An oscillatory transient is a brief, bidirectional variation in voltage, current, or both on a power line. These can occur due to the switching of power factor correction capacitors, or transformer ferroresonance.

■ An interruption is defined as a reduction in line-voltage or current to less than 10 percent of the nominal, not exceeding 60 seconds in length.

■ Another common power-quality event is “notching,” which can be created by rectifiers that have finite line inductance. The notches show up due to an effect known as “current commutation.”

■ Voltage fluctuations are relatively small (less than 5 percent) variations in the rms line-voltage. These variations can be caused by cycloconverters, arc furnaces, and other systems that draw current not in synchronization with the line frequency [1.51–1.61]. Such fluctuations can result in variations in the lighting intensity due to an effect known as “flicker” which is visible to the end user.

■ A voltage “imbalance” is a variation in the amplitudes of three-phase voltages, relative to one another.

VOLTAGE SAGS (DIPS) : POWER QUALITY PROBLEM



WHAT ARE VOLTAGE SAGS?

A sag is a decrease to between 0.1 and 0.9 pu in rms voltage or current at the power frequency for durations from 0.5 cycle to 1 min. The power quality community has used the term sag for many years
to describe a short-duration voltage decrease.

Although the term has not been formally defined, it has been increasingly accepted and used by utilities, manufacturers, and end users. The IEC definition for this phenomenon is dip. The two terms are considered interchangeable, with sag being the preferred synonym in the U.S. power quality community.

Terminology used to describe the magnitude of a voltage sag is often confusing. A “20 percent sag” can refer to a sag which results in a voltage of 0.8 or 0.2 pu. The preferred terminology would be one that leaves no doubt as to the resulting voltage level: “a sag to 0.8 pu” or “a sag whose magnitude was 20 percent.”

When not specified otherwise, a 20 percent sag will be considered an event during which the rms voltage decreased by 20 percent to 0.8 pu. The nominal, or base, voltage level should also be specified.

Voltage sags are usually associated with system faults but can also be caused by energization of heavy loads or starting of large motors. Figure 2.6 shows a typical voltage sag that can be associated with a single-line-to-ground (SLG) fault on another feeder from the same substation.


An 80 percent sag exists for about 3 cycles until the substation breaker is able to interrupt the fault current. Typical fault clearing times range from 3 to 30 cycles, depending on the fault current magnitude and the type of overcurrent protection.

 Figure 2.7 illustrates the effect of a large motor starting. An induction motor will draw 6 to 10 times its full load current during start-up.


If the current magnitude is large relative to the available fault current in the system at that point, the resulting voltage sag can be significant. In this case, the voltage sags immediately to 80 percent and then gradually returns to normal in about 3 s. Note the difference in time frame between this and sags due to utility system faults.

Until recent efforts, the duration of sag events has not been clearly defined. Typical sag duration is defined in some publications as ranging from 2 ms (about one-tenth of a cycle) to a couple of minutes.

Undervoltages that last less than one-half cycle cannot be characterized effectively by a change in the rms value of the fundamental frequency value. Therefore, these events are considered transients.

Undervoltages that last longer than 1 min can typically be controlled by voltage regulation equipment and may be associated with causes other than system faults. Therefore, these are classified as long-duration variations.

Sag durations are subdivided here into three categories—instantaneous, momentary, and temporary—which coincide with the three categories of interruptions and swells. These durations are intended to correspond to typical utility protective device operation times as well as duration divisions recommended by international technical organizations.


SHORT DURATION VOLTAGE VARIATION : POWER QUALITY ISSUES



A voltage sag (dip) is defined as a decrease in the root-mean-square (rms) voltage at the power frequency for periods ranging from a half cycle to a minute.11 It is caused by voltage drops due to fault currents or starting of large motors. Sags may trigger shutdown of process controllers or computer system crashes.

A voltage swell is defined as an increase up to a level between 1.1 and 1.8 pu in rms voltage at the power frequency for periods ranging from a half cycle to a minute.

An interruption occurs when the supply voltage decreases to less than 0.1 pu for a period of time not exceeding 1 min. Interruptions can be caused by faults, control malfunctions, or equipment failures.

All these types of disturbances, such as voltage sags, voltage swells, and interruptions, can be classified into three types, depending on their duration.

a. Instantaneous: 0.5–30 cycles
b. Momentary: 30 cycles–3 s
c. Temporary: 3 s–1 min

It is helpful to distinguish the term outage used in reliability terminology from sustained interruption when the supply voltage is zero for longer than 1 min.

Outage refers to the state of a component in a system that has failed to function as expected and is used to quantify reliability statistics regarding continuity of service, whereas sustained interruptions as used in monitoring power quality to indicate the absence of voltage for long periods of time.
free counters