ELECTRICAL ENGINEERING | CIRCUITS | ALTERNATING CURRENT | DIRECT CURRENT | GENERATION | TRANSMISSION LINES | PROTECTIVE RELAYING | SUBSTATION | SCADA | DISTRIBUTION SYSTEM | POWER SYSTEM | FAULT ANALYSIS
WHAT IS POWER QUALITY?
There can be completely different definitions for power quality, depending on one’s frame of reference. For example, a utility may define power quality as reliability and show statistics demonstrating that its system is 99.98 percent reliable.
Criteria established by regulatory agencies are usually in this vein. A manufacturer of load equipment may define power quality as those characteristics of the power supply that enable the equipment to work properly. These characteristics can be very different for different criteria.
Power quality is ultimately a consumer-driven issue, and the end user’s point of reference takes precedence Therefore, the following definition of a power quality problem is used:
"Any power problem manifested in voltage, current, or frequency deviations that results in failure or misoperation of customer equipment."
There are many misunderstandings regarding the causes of power quality problems. The utility’s and
customer’s perspectives are often much different. While both tend to blame about two-thirds of the events on natural phenomena (e.g., lightning), customers, much more frequently than utility personnel, think that the utility is at fault.
When there is a power problem with a piece of equipment, end users may be quick to complain to the utility of an “outage” or “glitch” that has caused the problem. However, the utility records may indicate no abnormal events on the feed to the customer.
We recently investigated a case where the end-use equipment was knocked off line 30 times in 9 months, but there were only five operations on the utility substation breaker. It must be realized that there are many events resulting in end-user problems that never show up in the utility statistics.
One example is capacitor switching, which is quite common and normal on the utility system, but can cause transient overvoltages that disrupt manufacturing machinery.
Another example is a momentary fault elsewhere in the system that causes the voltage to sag briefly at the location of the customer in question. This might cause an adjustable-speed drive or a distributed
generator to trip off, but the utility will have no indication that anything was amiss on the feeder unless it has a power quality monitor installed.
In addition to real power quality problems, there are also perceived power quality problems that may actually be related to hardware, software, or control system malfunctions. Electronic components can degrade over time due to repeated transient voltages and eventually fail due to a relatively low magnitude event.
Thus, it is sometimes difficult to associate a failure with a specific cause. It is becoming more common that designers of control software for microprocessor-based equipment have an incomplete knowledge of how power systems operate and do not anticipate all types of malfunction events.
Thus, a device can misbehave because of a deficiency in the embedded software. This is particularly common with early versions of new computer-controlled load equipment.
One of the main objectives of this site is to educate utilities, end users, and equipment suppliers alike to reduce the frequency of malfunctions caused by software deficiencies.
In response to this growing concern for power quality, electric utilities have programs that help them respond to customer concerns. The philosophy of these programs ranges from reactive, where the utility responds to customer complaints, to proactive, where the utility is involved in educating the customer and promoting services that can help develop solutions to power quality problems.
The regulatory issues facing utilities may play an important role in how their programs are structured. Since power quality problems often involve interactions between the supply system and the customer facility and equipment, regulators should make sure that distribution companies have incentives to work with customers and help customers solve these problems.
The economics involved in solving a power quality problem must also be included in the analysis. It is not always economical to eliminate power quality variations on the supply side.
In many cases, the optimal solution to a problem may involve making a particular piece of sensitive equipment less sensitive to power quality variations. The level of power quality required is that level which will result in proper operation of the equipment at a particular facility.
Power quality, like quality in other goods and services, is difficult to quantify. There is no single accepted definition of quality power. There are standards for voltage and other technical criteria that may be measured, but the ultimate measure of power quality is determined by the performance and productivity of end-user equipment.
If the electric power is inadequate for those needs, then the “quality” is lacking. Perhaps nothing has been more symbolic of a mismatch in the power delivery system and consumer technology than the “blinking clock” phenomenon.
Clock designers created the blinking display of a digital clock to warn of possible incorrect time after loss of power and inadvertently created one of the first power quality monitors. It has made the homeowner aware that there are numerous minor disturbances occurring throughout the power delivery system that may have no ill effects other than to be detected by a clock.
Many appliances now have a built-in clock, so the average household may have about a dozen clocks that must be reset when there is a brief interruption. Older-technology motor-driven clocks would simply lose a few seconds during minor disturbances and then promptly come back into synchronism.
Subscribe to:
Post Comments (Atom)
PREVIOUS ARTICLES
-
▼
2012
(284)
-
▼
December
(12)
- LAMP COLOR TEMPERATURE BASIC INFORMATION AND TUTOR...
- ENERGY SAVING BALLAST BASIC INFORMATION AND TUTORIALS
- MISMATCHING OF FLUORESCENT LAMPS AND BALLASTS BASI...
- FLUORESCENT BALLASTS TYPES BASIC INFORMATION AND T...
- WHAT IS A LUMINAIRE? BASIC INFORMATION AND TUTORIALS
- CLASSIFICATION OF CABLES USED IN SUBSTATION BASIC ...
- SUBSTATION CABLE VOLTAGE RATING BASIC INFORMATION ...
- GROUNDING GRID DESIGN CRITICAL PARAMETERS BASIC IN...
- CAPACITOR INSTALLATION SYSTEMS BENEFITS BASIC INFO...
- NEC RULES FOR CONDUCTORS
- WHAT IS POWER QUALITY?
- WHAT IS POWER QUALITY ALL ABOUT? BASIC INFORMATION
-
▼
December
(12)
Week's Popular
- CBEMA AND ITIC CURVES POWER QUALITY INFORMATION
- ELECTRICAL WIRING DIAGRAM GRAPHIC SYMBOLS BASIC INFORMATION AND TUTORIALS
- BREAKER AND A HALF SUBSTATION SCHEME – BASIC INFORMATION AND TUTORIALS
- CAPACITOR EXCITATION SYSTEM OF GENERATORS BASIC AND TUTORIALS
- RIGID AND STRAIN BUS COMPARISON FOR SUBSTATION USES BASIC INFORMATION
- THE TRANSMISSION AND DISTRIBUTION SYSTEM BASIC AND TUTORIALS
- PARTS OF 69 KV SURGE ARRESTERS (LIGHTNING ARRESTER)
- ADVANTAGES AND DISADVANTAGES OF DIFFERENT SUBSTATION SCHEMES COMPARISON OF CONFIGURATIONS
- DIRECT AND INDIRECT COOLING OF GENERATOR ROTORS BAIC INFORMATION
- SUBSTATION ELECTRICAL BUS AND PARTS CLEARANCES REQUIREMENTS BASIC INFORMATION AND TUTORIALS
No comments:
Post a Comment