ELECTRICAL ENGINEERING | CIRCUITS | ALTERNATING CURRENT | DIRECT CURRENT | GENERATION | TRANSMISSION LINES | PROTECTIVE RELAYING | SUBSTATION | SCADA | DISTRIBUTION SYSTEM | POWER SYSTEM | FAULT ANALYSIS
LORENTZ FORCE LAW BASIC DEFINITION AND TUTORIALS
The Lorentz Force Law
F = q(E + v × B) (3.1), gives the force F on a particle of charge q in the presence of electric and magnetic fields. In SI units, F is in newtons, q in coulombs, E in volts per meter, B in teslas, and v, which is the velocity of the particle relative to the magnetic field, in meters per second.
Thus, in a pure electric-field system, the force is determined simply by the charge on the particle and the electric field
F = qE (1)
The force acts in the direction of the electric field and is independent of any particle motion. In pure magnetic-field systems, the situation is somewhat more complex. Here the force
F = q(v × B) (2)
is determined by the magnitude of the charge on the particle and the magnitude of the B field as well as the velocity of the particle. In fact, the direction of the force is always perpendicular to the direction of both the particle motion and that of the magnetic field. Mathematically, this is indicated by the vector cross product v× B in Eq. 2.
The magnitude of this cross product is equal to the product of the magnitudes of v and B and the sine of the angle between them; its direction can be found from the right-hand rule, which states that when the thumb of the fight hand points in the direction of v and the index finger points in the direction of B, the force, which is perpendicular to the directions of both B and v, points in the direction normal to the palm of the hand, as shown in Fig below.
For situations where large numbers of charged particles are in motion, it is convenient to rewrite Eq. 1 in terms of the charge density p (measured in units of coulombs per cubic meter) as
Fv = p(E + v × B) (3)
where the subscript v indicates that Fv is a force density (force per unit volume) which in SI units is measured in newtons per cubic meter. The product p v is known as the current density
J = pv
which has the units of amperes per square meter. The magnetic-system force density corresponding to Eq. 3 can then be written as
Fv = J x B (3.6)
For currents flowing in conducting media, Eq. 3.6 can be used to find the force density acting on the material itself. Note that a considerable amount of physics is hidden in this seemingly simple statement, since the mechanism by which the force is transferred from the moving charges to the conducting medium is a complex one.
Subscribe to:
Post Comments (Atom)
PREVIOUS ARTICLES
-
▼
2012
(284)
-
▼
June
(40)
- CORE LOSSES OF DC GENERATORS BASIC INFORMATION AND...
- ELECTRICAL SPECIFICATIONS BASIC INFORMATION AND TU...
- ELECTRICAL PRODUCT AND WORK STANDARDS BASIC INFORM...
- ELECTRICAL WIRING DIAGRAM GRAPHIC SYMBOLS BASIC IN...
- EXCITATION SYSTEM CEILING VOLTAGE OF SYNCHRONOUS G...
- THE ROLE OF THE ENERGY MANAGER
- Tidal Lagoon Power Generation Scheme in Swansea Ba...
- Modeling Distributed Electricity Generation in the...
- Biomass for Electricity Generation PDF WHITE PAPER...
- PERMANENT MAGNET SYNCHRONOUS GENERATORS BASIC AND ...
- DIRECT CURRENT (DC) GENERATORS BASIC AND TUTORIALS
- AC GENERATORS COOLING SYSTEM BASIC AND TUTORIALS
- EXCITATION SYSTEM OF HYDRO POWER GENERATOR BASIC I...
- GENERATOR TYPE SELECTION FOR HYDROELECTRIC POWER P...
- TESTING OF AC GENERATORS BASIC AND TUTORIALS
- STATOR AND ROTOR CONSTRUCTION OF AC GENERATORS
- STRANDING AND TRANSPOSITION OF AC GENERATORS ARMAT...
- AC GENERATOR MAGNETIC CIRCUIT AND MATERIAL BASIC A...
- POLES AND FREQUENCY OF ALTERNATING CURRENT (AC) GE...
- PARALLEL OPERATION OF GENERATORS BASIC AND TUTORIALS
- INDUCTION GENERATORS - GENERAL CHARACTERISTICS BAS...
- GENERATOR REAL POWER PRODUCTION BASIC AND TUTORIALS
- LORENTZ FORCE LAW BASIC DEFINITION AND TUTORIALS
- SHUNT WOUND GENERATOR BASIC AND TUTORIALS
- THERMOELECTRICS AND THERMIONICS BASIC AND TUTORIALS
- SOLAR THERMAL ELECTRIC CONVERSION BASIC AND TUTORIALS
- WIND - ELECTRIC ENERGY CONVERSION BASIC AND TUTORIALS
- PHOTOVOLTAICS - SOLAR ENERGY POWER GENERATION BASI...
- ELECTRIC POWER GENERATION - ENERGY CONVERSION BASI...
- DISTRIBUTED POWER GENERATION BASIC AND TUTORIALS
- WHAT IS FREQUENCY? BASIC DEFINITION AND TUTORIALS
- TIME CONSTANTS BASIC DEFINITION AND TUTORIALS
- PARTS OF CIRCUIT BREAKER BASIC AND TUTORIALS
- WHAT ARE FUSES? BASIC DEFINITION AND TUTORIALS
- WHAT ARE INDUCTORS? BASIC DEFINITION AND TUTORIALS
- D'ARSONVAL MOVEMENT - HOW AMMETERS WORK? BASIC DEF...
- WHAT IS WATT HOUR - UNIT OF ENERGY BASIC DEFINITIO...
- THE AMPERE - UNIT OF CURRENT BASIC DEFINITION AND ...
- BRIEF HISTORY OF THE ELECTRIC POWER SYSTEM – BASIC...
- TEMPERATURE COEFFICIENT OF ELECTRICAL RESISTANCE B...
-
▼
June
(40)
Week's Popular
- CBEMA AND ITIC CURVES POWER QUALITY INFORMATION
- ELECTRICAL WIRING DIAGRAM GRAPHIC SYMBOLS BASIC INFORMATION AND TUTORIALS
- PARTS OF CIRCUIT SWITCHER AND ITS GENERAL CONSTRUCTION BASIC INFORMATION AND TUTORIALS
- THE TRANSMISSION AND DISTRIBUTION SYSTEM BASIC AND TUTORIALS
- RIGID AND STRAIN BUS COMPARISON FOR SUBSTATION USES BASIC INFORMATION
- BREAKER AND A HALF SUBSTATION SCHEME – BASIC INFORMATION AND TUTORIALS
- SUBSTATION ELECTRICAL BUS AND PARTS CLEARANCES REQUIREMENTS BASIC INFORMATION AND TUTORIALS
- DIRECT AND INDIRECT COOLING OF GENERATOR ROTORS BAIC INFORMATION
- AC GENERATORS COOLING SYSTEM BASIC AND TUTORIALS
- CAPACITOR EXCITATION SYSTEM OF GENERATORS BASIC AND TUTORIALS
No comments:
Post a Comment