ELECTRICAL ENGINEERING | CIRCUITS | ALTERNATING CURRENT | DIRECT CURRENT | GENERATION | TRANSMISSION LINES | PROTECTIVE RELAYING | SUBSTATION | SCADA | DISTRIBUTION SYSTEM | POWER SYSTEM | FAULT ANALYSIS
STATIC COMPENSATOR (STATCOM) DEFINITION BASIC AND TUTORIALS
This is a shunt device that does not require passive elements like inductors and capacitors. The schematic diagram of a SMIB power system that is compensated by a shunt compensator is shown in Figure 1.10. The STATCOM is built around a voltage source inverter, which is supplied by a dc capacitor. The inverter consists of GTO switches which are turned on and off through a gate drive circuit.
The output of the voltage source inverter is connected to that ac system through a coupling transformer. The inverter produces a quasi sinewave voltage Vo at the fundamental frequency. Let us assume that the losses in the inverter and the coupling transformer are negligible.
The inverter is then gated such that the output voltage of the inverter Vo is in phase with the local bus voltage v. In this situation two ac voltages that are in phase are connected together through a reactor, which is the leakage reactance of the coupling transformer.
Therefore the current ['I is a purely reactive. If the magnitude of the voltage Vm is more than that of the voltage Vo, the reactive current Iq flows from the bus to the inverter. Then the inverter will consume reactive power.
If, on the other hand, the magnitude of Vo is greater than that of Vm, then the inverter feeds reactive power to the system. Therefore through this arrangement the STATCOM can generate or absorb reactive power.
In practice how ever the losses are not negligible and must be drawn from the ac system. This is accomplished by slightly shifting the phase angle of the voltage Vo through a feedback mechanism such that the de capacitor voltage is held constant.
The structure of the GTO-based VSI must be so chosen that the lower order harmonics are eliminated from the output voltage. The VSI will then resemble a synchronous voltage source. Because the switching frequency of each GTOs must be kept low, overall switch ripple needs to be kept low without use of PWM.
This is accomplished by connecting a large number of basic inverter modules. The construction of a 48-step voltage source inverter is discussed in [19].
In this inverter, eight identical elementary 6-step inverters are operated from a common dc bus. Each of these 6-step inverters produces a compatible set of three-phase, quasi-square wave output voltage waveforms.
The outputs of these 6-step inverters are added through a magnetic circuit that contains eighteen single phase three winding transformers and six single-phase two winding transformers. This connection eliminates all low-order harmonics.
The lowest order harmonic on the ac side is 47th while that on the dc side is 48th . The line-to-line output\ voltage of the 48-step inverter is shown in Figure 1.11 along with the fundamental voltage. It can be seen that the output is a stepped approximation of the fundamental sinewave. The construction of a multilevel synchronous voltage source is given in.
Subscribe to:
Post Comments (Atom)
PREVIOUS ARTICLES
-
▼
2012
(284)
-
▼
May
(45)
- HIGH PASS FILTERS BASIC INFORMATION AND TUTORIALS
- LOW PASS FILTERS BASIC INFORMATION AND TUTORIALS
- STATIC COMPENSATOR (STATCOM) DEFINITION BASIC AND ...
- VARIABLE RESISTORS DEFINITION BASIC AND TUTORIALS
- FIXED RESISTORS DEFINITION BASIC AND TUTORIALS
- ELECTRIC CHARGE BASIC DEFINITION INFORMATION AND T...
- THE OHM'S LAW BASIC DEFINITION INFORMATION AND TUT...
- WHAT IS CAPACITANCE? BASIC INFORMATION AND TUTORIALS
- CIRCUIT ANALYSIS TYPE BASIC INFORMATION
- MAGNETIC PROPERTIES AND APPLICATIONS BASIC INFORMA...
- MAGNET WIRE INSULATION BASICS AND TUTORIALS
- DIELECTRIC STRENGTH DEFINITION AND BASIC INFORMATI...
- AWG (AMERICAN WIRE GAGE) CONDUCTOR SIZE DESIGNATIO...
- DIELECTRIC LOSS AND CORONA BASIC INFORMATION AND T...
- SKIN EFFECT – BASIC DEFINITION AND TUTORIALS
- SYNCHRONOUS MOTOR AND CONDENSER STARTING BASIC INF...
- DIFFERENT TYPES OF MAGNETIC MATERIALS BASIC INFORM...
- ENERGY TRANSFORMATION EFFECTS BASIC INFORMATION AN...
- TURBINE GENERATOR STANDARD AND OPTIONAL EQUIPMENT
- WHAT ARE ELECTROMAGNETS – DEFINITION BASICS AND TU...
- WHAT IS FARADAY'S LAW OF ELECTROMAGNETIC INDUCTION...
- KIRCHHOFF'S CURRENT LAW BASIC INFORMATION AND TUTO...
- KIRCHHOFF'S VOLTAGE LAW BASIC INFORMATION AND TUTO...
- WHAT IS RESISTANCE (CIRCUIT ANALYSIS) – DEFINITION...
- WHAT IS ELECTROMAGNETIC INDUCTION – DEFINITION BAS...
- WHAT IS AN ELECTRIC FIELD - DEFINITION BASICS AND ...
- THREE PHASE SYSTEM AND PHASE SEQUENCE BASIC AND TU...
- VOLTAGE – CURRENT AND POWER IN A CIRCUIT WITH COMB...
- INDUCTANCE - BASIC ELECTRICAL PARAMETERS INFORMATI...
- RESISTANCE IN PARALLEL BASIC INFORMATION AND TUTOR...
- RESISTANCE IN SERIES BASIC INFORMATION AND TUTORIALS
- ELECTROMAGNETIC FIELD AND HEALTH EFFECTS BASIC INF...
- STATIC CHARGE - BASIC ELECTRICAL PARAMETER INFORMA...
- ELECTRIC CURRENT AND CHARGE BASIC AND TUTORIALS
- HOW ALTERNATING CURRENT WORKS - THE BASICS OF ALTE...
- SOURCES OF THE ELECTRIC ENERGY—GENERATION BASIC AN...
- FARADAY'S LAW OF INDUCTION BASIC AND TUTORIALS
- NODAL ANALYSIS OF A DC NETWORK BASIC AND TUTORIALS
- POWER RECTIFIERS BASIC DEFINITION AND TUTORIALS
- THE TRANSMISSION AND DISTRIBUTION SYSTEM BASIC AND...
- PRIVACY POLICY
- HARMONIC FREQUENCIES BASIC DEFINITION & TUTORIALS
- VOLTAGE SAG PREDICTIONS BASIC INFORMATION
- GROUNDING FOR NOISE CONTROL BASIC AND TUTORIALS
- POWER QUALITY STANDARDS BY IIEE
-
▼
May
(45)
Week's Popular
- CAPACITOR EXCITATION SYSTEM OF GENERATORS BASIC AND TUTORIALS
- BREAKER AND A HALF SUBSTATION SCHEME – BASIC INFORMATION AND TUTORIALS
- RIGID AND STRAIN BUS COMPARISON FOR SUBSTATION USES BASIC INFORMATION
- CBEMA AND ITIC CURVES POWER QUALITY INFORMATION
- SUBSTATION ELECTRICAL BUS AND PARTS CLEARANCES REQUIREMENTS BASIC INFORMATION AND TUTORIALS
- THE TRANSMISSION AND DISTRIBUTION SYSTEM BASIC AND TUTORIALS
- GROUNDING GRID DESIGN CRITICAL PARAMETERS BASIC INFORMATION
- ELECTRICAL WIRING DIAGRAM GRAPHIC SYMBOLS BASIC INFORMATION AND TUTORIALS
- KERAUNIC LEVEL AND GROUND FLASH DENSITY BASIC DEFINITION AND TUTORIALS
- NODAL ANALYSIS OF A DC NETWORK BASIC AND TUTORIALS
Hi, may i know how to set up the coupling transformer parameters and the reactor ?
ReplyDelete