ELECTRICAL ENGINEERING | CIRCUITS | ALTERNATING CURRENT | DIRECT CURRENT | GENERATION | TRANSMISSION LINES | PROTECTIVE RELAYING | SUBSTATION | SCADA | DISTRIBUTION SYSTEM | POWER SYSTEM | FAULT ANALYSIS
LOW PASS FILTERS BASIC INFORMATION AND TUTORIALS
WHAT ARE LOW PASS FILTERS?
Consider the circuit shown in Figure 2.32 . Note similarities to the RC circuit that we used to first understand the effects of a capacitor. The difference is that now we are going to apply an AC signal to the input rather than the step input we applied before.
This circuit is known as a low-pass fi lter, and all you really need to know to understand it is the voltage divider rule and how a capacitor reacts to frequency. If this were a simple voltage divider, you could figure out, based on the ratio of the resistors, how much voltage would appear at the output.
Remember that the cap is like a resistor that depends on frequency and try to extrapolate what will happen as frequency sweeps from zero to infinity. At low frequencies the cap doesn’t pass much current, so the signal isn’t affected much.
As frequency increases, the cap will pass more and more current, shorting the output of the resistor to ground and dividing the output voltage to smaller and smaller levels. There is a magic point at which the output is half the input.
It is when the frequency equals 1/RC. You might have noticed that this is the inverse of the time constant that we used earlier when we first looked at caps. Kinda cool when it all comes together, isn’t it? This is known as a low-pass filter because it passes low frequencies while reducing or attenuating high frequencies. You can make a low-pass filter with an inductor and resistor, too.
Given that the inductor behaves in a way that is opposite of a capacitor, can you imagine what that might look like? Have a look at Figure 2.33 .
That’s right; you swap the position of the components. That’s because the inductor (being the opposite of a cap) passes the lower frequencies and blocks the higher frequencies. It performs the same function as the low-pass RC circuit but in a slightly different manner. You still have a voltage-divider circuit, but instead of the resistor-to-ground changing, the input resistor is changing.
At low frequencies the inductor is a short, making the ground resistor of little effect. As frequencies increase, the inductor chokes 28 off the current, reacting in a way that makes the input element of the voltage divider seem like an increasingly large resistance.
This in turn makes the resistor to ground have a much bigger say in the ratio of the voltage-divider circuit. To summarize, in the low-pass fi lter circuits, as the frequencies sweep from low to high, the cap starts out as an open and moves to a short while the inductor starts out as a short and becomes an open.
By positioning these components in opposite locations in the voltage-divider circuit, you create the same filtering effect. The ratio of the voltage divider in both types of fi lters decreases the output voltage as frequencies increase.
All this lets the low frequencies pass and blocks the high frequencies. Now, what do you suspect might happen if we swap the position of the components in these circuits?
Subscribe to:
Post Comments (Atom)
PREVIOUS ARTICLES
-
▼
2012
(284)
-
▼
May
(45)
- HIGH PASS FILTERS BASIC INFORMATION AND TUTORIALS
- LOW PASS FILTERS BASIC INFORMATION AND TUTORIALS
- STATIC COMPENSATOR (STATCOM) DEFINITION BASIC AND ...
- VARIABLE RESISTORS DEFINITION BASIC AND TUTORIALS
- FIXED RESISTORS DEFINITION BASIC AND TUTORIALS
- ELECTRIC CHARGE BASIC DEFINITION INFORMATION AND T...
- THE OHM'S LAW BASIC DEFINITION INFORMATION AND TUT...
- WHAT IS CAPACITANCE? BASIC INFORMATION AND TUTORIALS
- CIRCUIT ANALYSIS TYPE BASIC INFORMATION
- MAGNETIC PROPERTIES AND APPLICATIONS BASIC INFORMA...
- MAGNET WIRE INSULATION BASICS AND TUTORIALS
- DIELECTRIC STRENGTH DEFINITION AND BASIC INFORMATI...
- AWG (AMERICAN WIRE GAGE) CONDUCTOR SIZE DESIGNATIO...
- DIELECTRIC LOSS AND CORONA BASIC INFORMATION AND T...
- SKIN EFFECT – BASIC DEFINITION AND TUTORIALS
- SYNCHRONOUS MOTOR AND CONDENSER STARTING BASIC INF...
- DIFFERENT TYPES OF MAGNETIC MATERIALS BASIC INFORM...
- ENERGY TRANSFORMATION EFFECTS BASIC INFORMATION AN...
- TURBINE GENERATOR STANDARD AND OPTIONAL EQUIPMENT
- WHAT ARE ELECTROMAGNETS – DEFINITION BASICS AND TU...
- WHAT IS FARADAY'S LAW OF ELECTROMAGNETIC INDUCTION...
- KIRCHHOFF'S CURRENT LAW BASIC INFORMATION AND TUTO...
- KIRCHHOFF'S VOLTAGE LAW BASIC INFORMATION AND TUTO...
- WHAT IS RESISTANCE (CIRCUIT ANALYSIS) – DEFINITION...
- WHAT IS ELECTROMAGNETIC INDUCTION – DEFINITION BAS...
- WHAT IS AN ELECTRIC FIELD - DEFINITION BASICS AND ...
- THREE PHASE SYSTEM AND PHASE SEQUENCE BASIC AND TU...
- VOLTAGE – CURRENT AND POWER IN A CIRCUIT WITH COMB...
- INDUCTANCE - BASIC ELECTRICAL PARAMETERS INFORMATI...
- RESISTANCE IN PARALLEL BASIC INFORMATION AND TUTOR...
- RESISTANCE IN SERIES BASIC INFORMATION AND TUTORIALS
- ELECTROMAGNETIC FIELD AND HEALTH EFFECTS BASIC INF...
- STATIC CHARGE - BASIC ELECTRICAL PARAMETER INFORMA...
- ELECTRIC CURRENT AND CHARGE BASIC AND TUTORIALS
- HOW ALTERNATING CURRENT WORKS - THE BASICS OF ALTE...
- SOURCES OF THE ELECTRIC ENERGY—GENERATION BASIC AN...
- FARADAY'S LAW OF INDUCTION BASIC AND TUTORIALS
- NODAL ANALYSIS OF A DC NETWORK BASIC AND TUTORIALS
- POWER RECTIFIERS BASIC DEFINITION AND TUTORIALS
- THE TRANSMISSION AND DISTRIBUTION SYSTEM BASIC AND...
- PRIVACY POLICY
- HARMONIC FREQUENCIES BASIC DEFINITION & TUTORIALS
- VOLTAGE SAG PREDICTIONS BASIC INFORMATION
- GROUNDING FOR NOISE CONTROL BASIC AND TUTORIALS
- POWER QUALITY STANDARDS BY IIEE
-
▼
May
(45)
Week's Popular
- CAPACITOR EXCITATION SYSTEM OF GENERATORS BASIC AND TUTORIALS
- BREAKER AND A HALF SUBSTATION SCHEME – BASIC INFORMATION AND TUTORIALS
- RIGID AND STRAIN BUS COMPARISON FOR SUBSTATION USES BASIC INFORMATION
- CBEMA AND ITIC CURVES POWER QUALITY INFORMATION
- SUBSTATION ELECTRICAL BUS AND PARTS CLEARANCES REQUIREMENTS BASIC INFORMATION AND TUTORIALS
- THE TRANSMISSION AND DISTRIBUTION SYSTEM BASIC AND TUTORIALS
- GROUNDING GRID DESIGN CRITICAL PARAMETERS BASIC INFORMATION
- ELECTRICAL WIRING DIAGRAM GRAPHIC SYMBOLS BASIC INFORMATION AND TUTORIALS
- KERAUNIC LEVEL AND GROUND FLASH DENSITY BASIC DEFINITION AND TUTORIALS
- NODAL ANALYSIS OF A DC NETWORK BASIC AND TUTORIALS
No comments:
Post a Comment