ELECTRICAL ENGINEERING | CIRCUITS | ALTERNATING CURRENT | DIRECT CURRENT | GENERATION | TRANSMISSION LINES | PROTECTIVE RELAYING | SUBSTATION | SCADA | DISTRIBUTION SYSTEM | POWER SYSTEM | FAULT ANALYSIS
WHAT IS WATT HOUR - UNIT OF ENERGY BASIC DEFINITION AND TUTORIALS
There is an important difference between energy and power. You’ve probably heard the two terms used interchangeably, as if they mean the same thing. But they don’t. Energy is power dissipated over a length of time. Power is the rate at which energy is expended.
Physicists measure energy in joules. One joule is the equivalent of one watt of power, dissipated for one second of time. In electricity, you’ll more often encounter the watt hour or the kilowatt hour. As their names imply, a watt hour, abbreviated Wh, is the equivalent of 1 W dissipated for an hour (1 h), and 1 kilowatt hour (kWh) is the equivalent of 1 kW of power dissipated for 1 h.
An energy of 1 Wh can be dissipated in an infinite number of different ways. A 60-watt bulb will burn 60 Wh in an hour, or 1 Wh per minute. A 100-W bulb would burn 1 Wh in 1/100 hour, or 36 seconds. A 6-watt Christmas tree bulb would require 10 minutes (1/6 hour) to burn 1 Wh. And the rate of power dissipation need not be constant; it could be constantly changing.
Figure 2-6 illustrates two hypothetical devices that burn up 1 Wh of energy. Device
A uses its power at a constant rate of 60 watts, so it consumes 1 Wh in a minute. The power consumption rate of device B varies, starting at zero and ending up at quite a lot more than 60 W. How do you know that this second device really burns up 1 Wh of energy?
You determine the area under the graph. This example has been chosen because figuring out this area is rather easy. Remember that the area of a triangle is equal to half the product of the base length and the height. This second device is on for 72 seconds, or 1.2 minute; this is 1.2/60 0.02 hour. Then the area under the “curve” is 1/2 100 0.02 1 Wh.
When calculating energy values, you must always remember the units you’re using. In this case the unit is the watt hour, so you must multiply watts by hours. If you multiply watts by minutes, or watts by seconds, you’ll get the wrong kind of units in your answer. That means a wrong answer!
Sometimes, the curves in graphs like these are complicated. In fact, they usually are. Consider the graph of power consumption in your home, versus time, for a whole day.
But there is another way to determine the total energy burned by your household in a day, or in a week, or most often, in a month. That is by means of the electric meter.
It measures electrical energy in kilowatt hours. Every month, without fail, the power company sends its representative to read that meter. This person takes down the number of kilowatt hours displayed, subtracts the number from the previous month, and a few days later you get a bill.
This meter automatically keeps track of total consumed energy, without anybody having to do sophisticated integral calculus to find the areas under irregular curves
Subscribe to:
Post Comments (Atom)
PREVIOUS ARTICLES
-
▼
2012
(284)
-
▼
June
(40)
- CORE LOSSES OF DC GENERATORS BASIC INFORMATION AND...
- ELECTRICAL SPECIFICATIONS BASIC INFORMATION AND TU...
- ELECTRICAL PRODUCT AND WORK STANDARDS BASIC INFORM...
- ELECTRICAL WIRING DIAGRAM GRAPHIC SYMBOLS BASIC IN...
- EXCITATION SYSTEM CEILING VOLTAGE OF SYNCHRONOUS G...
- THE ROLE OF THE ENERGY MANAGER
- Tidal Lagoon Power Generation Scheme in Swansea Ba...
- Modeling Distributed Electricity Generation in the...
- Biomass for Electricity Generation PDF WHITE PAPER...
- PERMANENT MAGNET SYNCHRONOUS GENERATORS BASIC AND ...
- DIRECT CURRENT (DC) GENERATORS BASIC AND TUTORIALS
- AC GENERATORS COOLING SYSTEM BASIC AND TUTORIALS
- EXCITATION SYSTEM OF HYDRO POWER GENERATOR BASIC I...
- GENERATOR TYPE SELECTION FOR HYDROELECTRIC POWER P...
- TESTING OF AC GENERATORS BASIC AND TUTORIALS
- STATOR AND ROTOR CONSTRUCTION OF AC GENERATORS
- STRANDING AND TRANSPOSITION OF AC GENERATORS ARMAT...
- AC GENERATOR MAGNETIC CIRCUIT AND MATERIAL BASIC A...
- POLES AND FREQUENCY OF ALTERNATING CURRENT (AC) GE...
- PARALLEL OPERATION OF GENERATORS BASIC AND TUTORIALS
- INDUCTION GENERATORS - GENERAL CHARACTERISTICS BAS...
- GENERATOR REAL POWER PRODUCTION BASIC AND TUTORIALS
- LORENTZ FORCE LAW BASIC DEFINITION AND TUTORIALS
- SHUNT WOUND GENERATOR BASIC AND TUTORIALS
- THERMOELECTRICS AND THERMIONICS BASIC AND TUTORIALS
- SOLAR THERMAL ELECTRIC CONVERSION BASIC AND TUTORIALS
- WIND - ELECTRIC ENERGY CONVERSION BASIC AND TUTORIALS
- PHOTOVOLTAICS - SOLAR ENERGY POWER GENERATION BASI...
- ELECTRIC POWER GENERATION - ENERGY CONVERSION BASI...
- DISTRIBUTED POWER GENERATION BASIC AND TUTORIALS
- WHAT IS FREQUENCY? BASIC DEFINITION AND TUTORIALS
- TIME CONSTANTS BASIC DEFINITION AND TUTORIALS
- PARTS OF CIRCUIT BREAKER BASIC AND TUTORIALS
- WHAT ARE FUSES? BASIC DEFINITION AND TUTORIALS
- WHAT ARE INDUCTORS? BASIC DEFINITION AND TUTORIALS
- D'ARSONVAL MOVEMENT - HOW AMMETERS WORK? BASIC DEF...
- WHAT IS WATT HOUR - UNIT OF ENERGY BASIC DEFINITIO...
- THE AMPERE - UNIT OF CURRENT BASIC DEFINITION AND ...
- BRIEF HISTORY OF THE ELECTRIC POWER SYSTEM – BASIC...
- TEMPERATURE COEFFICIENT OF ELECTRICAL RESISTANCE B...
-
▼
June
(40)
Week's Popular
- ELECTRICAL WIRING DIAGRAM GRAPHIC SYMBOLS BASIC INFORMATION AND TUTORIALS
- CAPACITOR EXCITATION SYSTEM OF GENERATORS BASIC AND TUTORIALS
- BREAKER AND A HALF SUBSTATION SCHEME – BASIC INFORMATION AND TUTORIALS
- THE TRANSMISSION AND DISTRIBUTION SYSTEM BASIC AND TUTORIALS
- SUBSTATION ELECTRICAL BUS AND PARTS CLEARANCES REQUIREMENTS BASIC INFORMATION AND TUTORIALS
- EXCITATION SYSTEM CEILING VOLTAGE OF SYNCHRONOUS GENERATORS
- CAUSES OF SPARKING AND POOR COMMUTATION OF DC GENERATORS BASIC INFORMATION
- RIGID AND STRAIN BUS COMPARISON FOR SUBSTATION USES BASIC INFORMATION
- CBEMA AND ITIC CURVES POWER QUALITY INFORMATION
- POLES AND FREQUENCY OF ALTERNATING CURRENT (AC) GENERATORS BASIC AND TUTORIALS
No comments:
Post a Comment